Antibiotics Introduction
Antibiotics History
Antibiotics Classes
All Antibiotics Classes Table
Types of Antibiotics
Indications for Antibiotics
Antibiotic Pharmacodynamics
Alternatives to Antibiotics
   - Some Alternatives
   - Natural Alternatives
   - Homeopathy Alternatives
   - Antibacterial Essential Oils
Antibiotic Resistance
  - Antibiotic Resistance History
  - Antibiotic Resistance Introduction
  - Signs of Antibiotic Resistance
  - Resistant Organisms
  - Bacterial Mechanisms
  - Causes of Antibiotic Resistance
  - Combating Antibiotic Resistance
Antibiotic Side Effects
   - Antibiotics Allergies
Antibiotics and Alcohol

Antibiotic Resistance History

History of antibiotics and emergence of antibiotic resistance

The first antibiotic, penicillin, was discovered in 1929 by Sir Alexander Fleming, who observed inhibition of staphylococci on an agar plate contaminated by a Penicillium mold. Fleming was searching for potential antibacterial compounds. He noticed that a patch of the mold Penicillium notatum had grown on a plate containing the bacterium Staphylococcus and that around the mold there was a zone where no Staphylococcus could grow. After more research, he was able to show that culture broth of the mold prevented growth of the Staphylococcus even when diluted up to 800 times. He named the active substance penicillin but was unable to isolate it.

In the center of the plate is a colony of Penicillium notatum, a mold that produces penicillin. After appearance of the mold colony, the plate was overlaid with a bacterial culture of Micrococcus luteus which forms a yellow "lawn" of growth. A zone of inhibition of bacterial growth surrounds the fungal colony where penicillin has diffused into the medium.

Several years later, in 1939, Ernst Chain and Howard Florey developed a way to isolate penicillin and used it to treat bacterial infections during the Second World War. The new drug came into clinical usage in 1946 and made a huge impact on public health. For these discoveries Fleming, Chain and Florey were awarded the Nobel prize in 1945. Their discovery and development revolutionized modern medicine and paved the way for the development of many more natural antibiotics.

While Fleming was working on penicillin, Gerhard Domagk, a German doctor, announced the discovery of a synthetic molecule with antibacterial properties. He named the compound Prontosil, and it became the first of a long series of synthetic antibiotics called sulfonamides or sulfa drugs. Prontosil was introduced to clinical use in the 1930s and was used to combat urinary tract infections, pneumonia and other conditions. While sulfa drugs in many cases are not as effective as natural antibiotics, they are now in widespread use for the treatment of many conditions. Gerhard Domagk was awarded the Nobel prize in 1939 for his discovery of Prontosil.

In 1946, penicillin became generally available for treatment of bacterial infections, especially those caused by staphylococci and streptococci. Initially, the antibiotic was effective against all sorts of infections caused by these two Gram-positive bacteria. Penicillin had unbelievable ability to kill these bacterial pathogens without harming the host that harbored them. It is important to note that a significant fraction of all human infections are caused by these two bacteria (i.e., strep throat, pneumonia, scarlet fever, septicemia, skin infections, wound infections, etc.).

In the late 1940s and early 1950s, new antibiotics were introduced, including streptomycin, chloramphenicol and tetracycline, and the age of antibiotic chemotherapy came into full being. These antibiotics were effective against the full array of bacterial pathogens including Gram-positive and Gram-negative bacteria, intracellular parasites, and the tuberculosis bacillus. Synthetic antimicrobial agents such as the "sulfa drugs" (sulfonamides) and anti-tuberculosis drugs, such as para aminosalicylic acid (PAS) and isoniazid (INH), were also brought into wider usage.

Antibiotics Dictionary

Antibiotics for Acne
Antibiotics for Acute Otitis Media
Antibiotics for Abscessed Tooth
Antibiotics for Abortion
Antibiotics for Abdominal Infection
Antibiotics for Acid Reflux
Antibiotics for Acinetobacter
Antibiotics for Acidophilus
Antibiotics for Actinomyces
Antibiotics for Adults
Antibiotics for Adenoids
Antibiotics for Advantages
Antibiotics for Aerobic Anaerobic
Antibiotics for AECB
Antibiotics for Aeromonas
Antibiotics for Agriculture
Antibiotics for Agar
Antibiotics for Age
Antibiotics for Aggressive Periodontitis
Antibiotics for AIDS(HIV/AIDS)
Antibiotics for Allergies
Antibiotics for ALS
Antibiotics for Alpacas
Antibiotics for Alzheimer's
Antibiotics for Amoebiasis
Antibiotics for Amoeba
Antibiotics for Aminoglycosides
Antibiotics for Ammonia
Antibiotics for Anthrax
Antibiotics for Animal Bites
Antibiotics for Anemia
Antibiotics for Ankylosing Spondylitis
Antibiotics for Angular Cheilitis
Antibiotics for Anorectal Abscess
Antibiotics for Anorexia
Antibiotics for Antifungal
Antibiotics for Antineoplastics
Antibiotics for Antiviral
Antibiotics for ANUG
Antibiotics for Anxiety
Antibiotics for Aortic Insufficiency
Antibiotics for Appendicitis
Antibiotics for Arthritis
Antibiotics for Arthroscopic Surgery
Antibiotics for Aspiration Pneumonia
Antibiotics for Asthma
Antibiotics for Aspergillus
Antibiotics for Asplenia does not provide medical advice, diagnosis or treatment.
?2011, All rights reserved.